From Functions to Circuits

...via truth tables...

Truth tables revisited

A truth table **uniquely defines** a Boolean function.

If we only have the truth table, how can we "extract" an expression for the function?

X	Y	Z	F(X, Y,Z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

The "Sum-of-Products" method

We want to find an expression that's TRUE exactly for the rows where F(X, Y, Z)=1.

	X	Y	Z	F(X,Y,Z)
	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	1
	1	0	0	1
V	1	0	1	0
	1	1	0	1
	1	1	1	1

The "Sum-of-Products" method

From Function to Circuit

So the function can be described by F(X, Y, Z)=

$\overline{X}\,Y\,\overline{Z} + \overline{X}\,Y\,Z + X\,\overline{Y}\,\overline{Z} + X\,Y\,\overline{Z} + X\,Y\,Z$

For any function in sum-of-products form, we can build a circuit in a very systematic way.

From Function to Circuit

Equivalent expressions

So the function can be described by F(X, Y, Z)=

$\overline{X}\,Y\,\overline{Z} + \overline{X}\,Y\,Z + X\,\overline{Y}\,\overline{Z} + X\,Y\,\overline{Z} + X\,Y\,Z$

But what about the way we previously wrote it? $F(X, Y, Z) = X\overline{Z} + Y$

The two are **equivalent**. We will see next how to simplify a function.

- Truth tables uniquely define Boolean functions.
- We can extract a "sum-of-products" form from a truth table by looking at the rows that result in 1
- Sums of products are easy to convert into circuits

